Abstract
We prove that the solutions to the discrete nonlinear Schrödinger equation with non-local algebraically decaying coupling converge strongly in L^2({mathbb {R}}^2) to those of the continuum fractional nonlinear Schrödinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter alpha in (1,2) approaches the boundaries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.