Abstract

Colloid-sized particles (10 nm–10 μm in characteristic size) adsorb onto fluid interfaces, where they minimize their interfacial energy by straddling the surface, immersing themselves partly in each phase bounding the interface. The energy minimum achieved by relocation to the surface can be orders of magnitude greater than the thermal energy, effectively trapping the particles into monolayers, allowing them freedom only to translate and rotate along the surface. Particles adsorbed at interfaces are models for the understanding of the dynamics and assembly of particles in two dimensions and have broad technological applications, importantly in foam and emulsion science and in the bottom-up fabrication of new materials based on their monolayer assemblies. In this review, the hydrodynamics of the colloid motion along the surface is examined from both continuum and molecular dynamics frameworks. The interfacial energies of adsorbed particles is discussed first, followed by the hydrodynamics, starting with isolated particles followed by pairwise and multiple particle interactions. The effect of particle shape is emphasized, and the role played by the immersion depth and the surface rheology is discussed; experiments illustrating the applicability of the hydrodynamic studies are also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call