Abstract

We investigate in this paper a continuous-time mean–variance portfolio selection problem in a general market setting with multiple assets that all can be risky. Using the Lagrange duality method and the dynamic programming approach, we derive explicit closed-form expressions for the efficient investment strategy and the mean–variance efficient frontier. We provided a necessary and sufficient condition under which the global minimum variance is zero and there exists a risk-free wealth process. Our results reveal that, even if there is no risk-free asset in the market, there can still exist a risk-free wealth process, the global minimum variance can be zero, and the efficient frontier can be a straight line in the mean–standard derivation plane. In addition, we further prove the validity of the two-fund separation theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.