Abstract
Using mean–variance (MV) criterion, this paper investigates a continuous-time defined contribution (DC) pension fund investment problem. The framework is constructed under a Markovian regime-switching market consisting of one bank account and multiple risky assets. The prices of the risky assets are governed by geometric Brownian motion while the accumulative contribution evolves according to a Brownian motion with drift and their correlation is considered. The market state is modeled by a Markovian chain and the random regime-switching is assumed to be independent of the underlying Brownian motions. The incorporation of the stochastic accumulative contribution and the correlations between the contribution and the prices of risky assets makes our problem harder to tackle. Luckily, based on appropriate Riccati-type equations and using the techniques of Lagrange multiplier and stochastic linear quadratic control, we derive the explicit expressions of the optimal strategy and efficient frontier. Further, two special cases with no contribution and no regime-switching, respectively, are discussed and the corresponding results are consistent with those results of Zhou & Yin [(2003) Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization 42 (4), 1466–1482] and Zhou & Li [(2000) Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization 42 (1), 19–33]. Finally, some numerical analyses based on real data from the American market are provided to illustrate the property of the optimal strategy and the effects of model parameters on the efficient frontier, which sheds light on our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.