Abstract

A nonlinear differential system for describing an air-water system in groundwater hydrology is given. The system is written in a fractional flow formulation, i.e., in terms of a saturation and a global pressure. A continuous-time version of the finite element method is developed and analyzed for the approximation of the saturation and pressure. The saturation equation is treated by a Galerkin finite element method, while the pressure equation is treated by a mixed finite element method. The analysis is carried out first for the case where the capillary diffusion coefficient is assumed to be uniformly positive, and is then extended to a degenerate case where the diffusion coefficient can be zero. It is shown that error estimates of optimal order in the $L^2$-norm and almost optimal order in the $L^\infty $-norm can be obtained in the nondegenerate case. In the degenerate case we consider a regularization of the saturation equation by perturbing the diffusion coefficient. The norm of error estimates depends on the severity of the degeneracy in diffusivity, with almost optimal order convergence for non-severe degeneracy. Existence and uniqueness of the approximate solution is also proven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call