Abstract

Efficient and dynamic light manipulation at small scale is highly desirable for many photonics applications. Active optical metasurfaces represent a useful way of achieving this due to their creative design potential, compact footprint, and low power consumption, paving the way toward the realization of chip-scale photonic devices with tunable optical functionality on demand. Here, we demonstrate a dynamically tunable, dual-function metasurface based on dielectric resonances in vanadium dioxide that is capable of independent active amplitude and phase control without the use of mechanical parts. Significant developments in the nanofabrication of vanadium dioxide have been shown to enable this metasurface. Gradual thermal control of the metasurface yields a computationally predicted continuously tuned amplitude modulation of 19 dB with negligible phase modulation and a continuously tuned phase modulation of 228° with negligible amplitude modulation, both at near-infrared wavelengths. Experimentally, a maximum continuously tuned amplitude modulation of 9.6 dB and phase modulation of 120° are shown, along with demonstration of stable intermediate states and repeated modulation without degradation. Reprogrammable optical functionality can thus be achieved in precisely engineered nanoantenna arrays for adaptive modulation of amplitude and phase of light for applications such as tunable holograms, lenses, and beam deflectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call