Abstract
Fiber-shaped strain sensors with great flexibility and knittability have been tremendously concerned due to the wide applications in health manager devices, especially in human motion detection and physiological signal monitoring. Herein, a novel fiber-shaped strain sensor has been designed and prepared by interpenetrating Ag nanowires (NWs) into polyolefin elastomer nanofibrous yarn. The easy-to-obtain structure and simple roll-to-roll process make the continuous large-scale production of nanofibrous composite yarn possible. The continuous and alternating stretching and releasing reversibly change the contact probability between AgNWs in this interpenetrating network, leading to the variations of electrical resistance of the sensor. The gauge factors of strain sensors are calculated to be as high as 13920 and the minimum detection limit is only 0.065%. In addition, the strain sensor shows excellent durability during 4500 cycles with the strain of 10%. The response times of stretching and releasing strains are 10 and 15 ms, respectively. Furthermore, the strain sensor has been successfully applied in human motion detections both in single yarn and knitted fabrics. The result shows the practicability in applications of monitoring limbs movements, eye motion changes, artificial vocal cords, human pulse, and complex motions, which shows great potential in wearable sensors and electronic skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.