Abstract
Conductive, wearable, and flexible hydrogel-based sensors are considered as promising applications in human motion detection and physiological signal monitoring. However, it is still a problem to integrate multiple functions into one material for the next-generation smart devices. Herein, we fabricated an ionic/electronic dual conductive hydrogel by combining the chemically crosslinked polyacrylamide (PAM) and the physically crosslinked carboxymethyl chitosan-grafted-polyaniline (CMCS-g-PANI)/Ag+ network. The double-network hydrogel displays a high stretchability, repeatable adhesiveness, antibacterial activities, and biocompatibility. It also has high sensitivity and stable electrical performance for wearable strain sensors. Furthermore, we assembled a self-powered strain sensor based on the conversion of chemical energy to electrical energy. It can be used for human motion detection even without external power supply. This work provides an avenue for the development of multifunctional hydrogels with outstanding mechanical and electronic performances for application in wearable electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.