Abstract

AbstractChemical syntheses using microchemical chips have been intensively investigated in recent years, but they have still not fully reached the stage of practical use. Combinatorial synthesis has been expected to be one of their useful applications. Benefits of using microchips, such as reduction in quantity of reagents and wastes, are thought to be suited for combinatorial syntheses, where numerous variations of products have to be synthesized each in small amounts. There are two modes of combinatorial syntheses using microchemical chips. One is sequential synthesis, in which reactant solutions are introduced sequentially in various combinations to a reaction microchannel. The other is parallel synthesis, where the number of reaction channels is the same as the number of final products, and starting materials are distributed to all the reaction channels in different combinations. Sequential synthesis has been considered as the more favorable way, because, especially when libraries of starting materials are large, numerous microchannels and complicated pipings for distribution of reagents to the channels are required for the parallel mode. Therefore, research on parallel microcombinatorial syntheses has been done only rarely, whereas there have been many reports of sequential microcombinatorial syntheses. Against this trend, our research group has taken an alternative path and tried to integrate both parallel reaction microchannels onto a glass microchip and channels for distributing reactant solutions to each reaction channel in a combinatorial mode. Microchips fabricated by laminating multiple layers of glass substrates have been used to construct three‐dimensional microchannel networks necessary for mixing reagent flows in different combinations. We utilized low Reynolds number multi‐phase laminar flow and developed micro‐unit operations (MUOs). By combining MUOs in the multi‐phase continuous laminar flows, microchemical systems were constructed. We called this micro‐integration methodology “continuous‐flow chemical processing (CFCP)”, and by using it, a sequence of various operations in chemical syntheses could be integrated on a microchemical chip. Not just simple mixing of two reagents, which was most commonly done in microreactors, but also multi‐step processes including other chemical operations, such as extraction and separation, could be carried out via CFCP. In the first part of this short review article, we explain CFCP with an example. Then, a microchemical chip with a three‐dimensional microchannel network for a parallel reaction system is introduced. Finally, we present a case in which CFCP was realized in a three‐dimensional microchannel network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call