Abstract
The continuous wavelet transform in higher dimensions is used to prove the regularity of weak solutions $u \in L^p(\mathbb R^n)$ under $Qu = f$ where $f$ belongs to the Triebel-Lizorkin space $F^{r,q}_p(\mathbb R^n)$ where $1 < p,q < \infty$, $0< r 0$ with positive constant coefficients $c_{\beta}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.