Abstract

We study the regularity problem of the nonlinear sigma model with gravitino fields in higher dimensions. After setting up the geometric model, we derive the Euler–Lagrange equations and consider the regularity of weak solutions defined in suitable Sobolev spaces. We show that any weak solution is actually smooth under some smallness assumption for certain Morrey norms. By assuming some higher integrability of the vector spinor, we can show a partial regularity result for stationary solutions, provided the gravitino is critical, which means that the corresponding supercurrent vanishes. Moreover, in dimension <6, partial regularity holds for stationary solutions with respect to general gravitino fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.