Abstract

We have achieved continuous-wave (CW) operation of an optically polarized m-plane GaN-based vertical-cavity surface-emitting laser (VCSEL) with an ion implanted current aperture, a tunnel junction intracavity contact, and a dual dielectric distributed Bragg reflector design. The reported VCSEL has 2 quantum wells, with a 14 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 23λ total cavity thickness. The thermal performance was improved by increasing the cavity length and using Au-In solid-liquid interdiffusion bonding, which led to lasing under CW operation for over 20 min. Lasing wavelengths under pulsed operation were observed at 406 nm, 412 nm, and 419 nm. Only the latter two modes appeared under CW operation due to the redshifted gain at higher temperatures. The peak output powers for a 6 μm aperture VCSEL under CW and pulsed operation were 140 μW and 700 μW, respectively. The fundamental transverse mode was observed without the presence of filamentary lasing. The thermal impedance was estimated to be ∼1400 °C/W for a 6 μm aperture 23λ VCSEL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.