Abstract

We propose a continuous-variable quantum sensing scheme, in which a harmonic oscillator is employed as the probe to estimate the parameters in the spectral density of a quantum reservoir, within a non-Markovian dynamical framework. It is revealed that the sensing sensitivity can be effectively boosted by (i) optimizing the weight of the momentum-position-type coupling in the whole probe-reservoir interaction Hamiltonian, (ii) the initial quantum squeezing resource provided by the probe, (iii) the noncanonical equilibration induced by the non-Markovian effect, and (iv) applying an external driving field. Our results may have some potential applications in understanding and controlling the decoherence of dissipative continuous-variable systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.