Abstract

Coupled harmonic oscillators are ubiquitous in physics and play a prominent role in quantum science. They are a cornerstone of quantum mechanics and quantum field theory, where second quantization relies on harmonic oscillator operators to create and annihilate particles. Descriptions of quantum tunneling, beamsplitters, coupled potential wells, "hopping terms", decoherence and many other phenomena rely on coupled harmonic oscillators. Despite their prominence, only a few experimental systems have demonstrated direct coupling between separate harmonic oscillators; these demonstrations lacked the capability for high-fidelity quantum control. Here, we realize coherent exchange of single motional quanta between harmonic oscillators -- in this case, spectrally separated harmonic modes of motion of a trapped ion crystal where the timing, strength, and phase of the coupling are controlled through the application of an oscillating electric field with suitable spatial variation. We demonstrate high-fidelity quantum state transfer, entanglement of motional modes, and Hong-Ou-Mandel-type interference. We also project a harmonic oscillator into its ground state by measurement and preserve that state during repetitions of the projective measurement, an important prerequisite for non-destructive syndrome measurement in continuous-variable quantum error correction. Controllable coupling between harmonic oscillators has potential applications in quantum information processing with continuous variables, quantum simulation, and precision measurements. It can also enable cooling and quantum logic spectroscopy involving motional modes of trapped ions that are not directly accessible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.