Abstract

We demonstrate that through inserting a short length of highly birefringent small-core photonic crystal fiber (Hi-Bi SC-PCF) into a soliton fiber laser, the nonlinear polarization rotation effect in this laser can be manipulated, leading to continuous tuning of the output pulse parameters. In experiments, we observed that by adjusting the polarization state of light launched into the Hi-Bi SC-PCF and varying the cavity attenuation, the laser spectral width can be continuously tuned from ∼7.1 to ∼1.7 nm, corresponding to a pulse-width-tuning range from ∼350 fs to ∼1.56 ps. During the parameter tuning, the output pulses strictly follow the soliton area theory, giving an almost constant time-bandwidth-product of ∼0.31. This soliton fiber laser, being capable of continuous parameter tuning, could be applied as the seed source in ultrafast laser systems and may find some applications in nonlinear-optics and soliton-dynamics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.