Abstract

Although deep neural networks offer better face detection results than shallow or handcrafted models, their complex architectures come with higher computational requirements and slower inference speeds than shallow neural networks. In this context, we study five straightforward approaches to achieve an optimal trade-off between accuracy and speed in face detection. All the approaches are based on separating the test images in two batches, an easy batch that is fed to a faster face detector and a difficult batch that is fed to a more accurate yet slower detector. We conduct experiments on the AFW and the FDDB data sets, using MobileNet-SSD as the fast face detector and S\(^3\)FD (Single Shot Scale-invariant Face Detector) as the accurate face detector, both models being pre-trained on the WIDER FACE data set. Our experiments show that the proposed difficulty metrics compare favorably to a random split of the images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.