Abstract
Traditionally, the process of group selection has been described mathematically by discrete-time models, and analyzed using tools like the Price equation. This approach makes implicit assumptions about the process that are not valid in general, like the central role of synchronized mass-dispersion and group re-formation events. In many important examples (like hunter–gatherer tribes) there are no mass-dispersion events, and the group-level events that do occur, like fission, fusion, and extinction, occur asynchronously. Examples like these can be fully analyzed by the equations of two-level population dynamics (described here) so their models are dynamically sufficient. However, it will be shown that examples like these cannot be fully analyzed by kin selection (inclusive fitness) methods because kin selection versions of group selection models are not dynamically sufficient. This is a critical mathematical difference between group selection and kin selection models, which implies that the two theories are not mathematically equivalent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.