Abstract

A Plastic quantum walk admits both continuous time and continuous spacetime. The model has been recently proposed by one of the authors in Di Molfetta and Arrighi (Quant Inf Process 19(2): 47, 2020), leading to a general quantum simulation scheme for simulating fermions in the relativistic and non-relativistic regimes. The extension to two physical dimensions is still missing and here, as a novel result, we demonstrate necessary and sufficient conditions concerning which discrete time quantum walks can admit plasticity, showing the resulting Hamiltonians. We consider coin operators as general 4 parameter unitary matrices, with parameters which are functions of the lattice step size $$\varepsilon $$ . This dependence on $$\varepsilon $$ encapsulates all functions of $$\varepsilon $$ for which a Taylor series expansion in $$\varepsilon $$ is well defined, making our results very general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.