Abstract

Space-time video super-resolution (ST-VSR) aims to simultaneously expand a given source video to a higher frame rate and resolution. However, most existing schemes either consider fixed intermediate time and scale or fail to exploit long-range temporal information due to model design or inefficient motion estimation and compensation. To address these problems, we propose a continuous ST-VSR method to convert the given video to any frame rate and spatial resolution with Multi- s tage M otion information r eorganization (MsMr). To achieve time-arbitrary interpolation, we propose a forward warping guided frame synthesis module and an optical flow-guided context consistency loss to better approximate extreme motion and preserve similar structures among input and prediction frames. To realize continuous spatial upsampling, we design a memory-friendly cascading depth-to-space module. Meanwhile, with the sophisticated reorganization of optical flow, MsMr realizes more efficient motion estimation and motion compensation, making it possible to propagate information from long-range neighboring frames and achieve better reconstruction quality. Extensive experiments show that the proposed algorithm is flexible and performs better on various datasets than the state-of-the-art methods. The code will be available at https://github.com/hahazh/LD-STVSR .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.