Abstract
Recently, scalable video compression using three-dimensional (3D) discrete wavelet transform has become a promising competitor in the scalable video coding (SVC) field. Overlapped block motion compensation (OBMC) is considered to be a key component of most efficient block-based motion estimation and compensation technologies for 3D wavelet-based SVC. However, the conventional OBMC approach globally smoothes out the prediction intensity field with the uniform window function for all the same-sized blocks, with the result that sharp features such as blocky edges are blurred or over-smoothed in the motion-compensated prediction. In this paper, we propose an improved OBMC scheme that adopts adpative weighting matrices for the case of variable block size motion compensation. Specifically, we resort to a parametric solution in closed form to express the optimal weights for the OBMC windows, based on the spatially-variant prediction of motion vectors. For our OBMC weighting matrices, the proposed interpolation algorithm is more effective in enhancing the coding performance than the most widely used interpolation algorithms, along with both the theoretical and empirical analyses. Experimental results show significant improvement over existing successful 3D wavelet-based scalable video codecs in both objective and subjective quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.