Abstract
We show that the continuous time crystal state can arise in an ensemble of linear oscillators from nonconservative coupling via optical radiation pressure forces. This new mechanism comprehensively explains observations of the time crystal state in an array of nanowires illuminated with light [T. Liu et al., Nat. Phys. 19, 986 (2023).NPAHAX1745-247310.1038/s41567-023-02023-5]. Being fundamentally different from regimes of nonlinear synchronization, it has relevance to a wide range of interacting many-body systems, including in the realms of chemistry, biology, weather, and nanoscale matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.