Abstract

In this study, a skin gas detection system based on quartz enhanced photoacoustic spectroscopy (QEPAS) with a constant temperature collection chamber and an automatic frequency adjustment function was used to collect and monitor carbon dioxide (CO2) emissions from human skin. The detection element of the system is an on-beam structure assembled by a 30.72 kHz quartz tuning fork (QTF). A laser with a wavelength of 4991.26 cm−1 is emitted (with a wavelength adjustment range of 10 cm−1) to excite the QTF. When the integration time is 365 s, the system can achieve a minimum detection limit (MDL) of 2.6 ppmv. The sensitivity of the system is 636.9 ppmv/V. The gas detection system is used to monitor the concentration of CO2 emissions from different parts of the skin and the same part covered by different cosmetics. The CO2 emission rate is defined as the ratio of the skin gas monitoring time of 25 min to the CO2 concentration variable in the gas chamber (volume of 8 mL). The results were collected from three healthy volunteers. Among the six different parts, the cheeks emitted the fastest rate (the average rate was 365.5 ppmv/min) of CO2, and the thighs emitted the slowest rate (the average rate was 56.4 ppmv/min) of CO2. Comparing the experimental results of the six sites at different times, the order of the CO2 emission rate is identical for all six sites. In the experiments with the three cosmetic products (experimental site: forearm), comparing the CO2 emission rate from clean skin with the CO2 emission rate from cosmetic-covered skin shows that sunscreen is the most breathable, followed by barrier cream, and foundation is the least breathable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call