Abstract
Image differences between the eyes can cause interocular discrepancies in the speed of visual processing. Millisecond-scale differences in visual processing speed can cause dramatic misperceptions of the depth and three-dimensional direction of moving objects. Here, we develop a monocular and binocular continuous target-tracking psychophysics paradigm that can quantify such tiny differences in visual processing speed. Human observers continuously tracked a target undergoing Brownian motion with a range of luminance levels in each eye. Suitable analyses recover the time course of the visuomotor response in each condition, the dependence of visual processing speed on luminance level, and the temporal evolution of processing differences between the eyes. Importantly, using a direct within-observer comparison, we show that continuous target-tracking and traditional forced-choice psychophysical methods provide estimates of interocular delays that agree on average to within a fraction of a millisecond. Thus, visual processing delays are preserved in the movement dynamics of the hand. Finally, we show analytically, and partially confirm experimentally, that differences between the temporal impulse response functions in the two eyes predict how lateral target motion causes misperceptions of motion in depth and associated tracking responses. Because continuous target tracking can accurately recover millisecond-scale differences in visual processing speed and has multiple advantages over traditional psychophysics, it should facilitate the study of temporal processing in the future.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have