Abstract
This work investigates the production of fatty acid ethyl esters (FAEEs) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process. Experiments were performed in a microtube reactor in the temperature range of 523 K to 598 K, from 10 MPa to 20 MPa, varying the oil to ethanol molar ratio from 1:10 to 1:40, and evaluating the effects of addition of carbon dioxide as co-solvent. Results showed that ethyl esters yield obtained in the microtube reactor (inner diameter 0.76 mm) were higher than those obtained in a tubular reactor (inner diameter 3.2 mm) possibly due to improved mass-transfer conditions attained inside the microtube reactor. Non-negligible reaction yields (70 wt.%) were achieved along with low total decomposition of fatty acids (< 5.0 wt.%). It is shown that the use of carbon dioxide as co-solvent in the proposed microtube reactor did not significantly affect the ethyl esters yield within the experimental variable ranges investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have