Abstract
Continuous measurement of vascular and hemodynamic parameters could improve monitoring of disease progression and enable timely clinical decision making and therapy surveillance in patients suffering from cardiovascular diseases. However, no reliable extravascular implantable sensor technology is currently available. Here, we report the design, characterization, and validation of an extravascular, magnetic flux sensing device capable of capturing the waveforms of the arterial wall diameter, arterial circumferential strain, and arterial pressure without restricting the arterial wall. The implantable sensing device, comprising a magnet and a magnetic flux sensing assembly, both encapsulated in biocompatible structures, has shown to be robust, with temperature and cyclic-loading stability. Continuous and accurate monitoring of arterial blood pressure and vascular properties was demonstrated with the proposed sensor invitro with a silicone artery model and validated invivo in a porcine model mimicking physiologic and pathologic hemodynamic conditions. The captured waveforms were further used to deduce the respiration frequency, the duration of the cardiac systolic phase, and the pulse wave velocity. The findings of this study not only suggest that the proposed sensing technology is a promising platform for accurate monitoring of arterial blood pressure and vascular properties, but also highlight the necessary changes in the technology and the implantation procedure to allow the translation of the sensing device in the clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.