Abstract
According to the classical electrodynamics, a new and reasonable method about electrostatic energy decomposition of the solute-solvent system has been proposed in this work by introducing the concept of spring energy. This decomposition in equilibrium solvation gives the clear comprehension for different parts of total electrostatic free energy. Logically extending this cognition to nonequilibrium leads to the new formula of electrostatic free energy of nonequilibrium state. Furthermore, the general solvation shift for light absorption/emission has been reformulated and applied to the ideal sphere case with the monopole approximation and multipole expansion. Solvation shifts in vertical ionizations of atomic ions of some series of main group elements have been investigated with monopole approximation, and the variation tendency of the solvation shift versus atomic number has been discussed. Moreover, the solvation shift in photoionization of nitrate anion in glycol has been investigated by the multipole expansion method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have