Abstract

The currently accepted initiation of Babesia infection describes a sporozoite stage infused into the host, along with other saliva components, by the tick vector. This sporozoite can enter and initiate erythrocyte infection directly. In the particular case of Babesia microti, however, that sporozoite loses the ability to further propagate in vitro once deprived of its natural host. True B. sensu stricto do not require the host collaboration described in this study. Hence it has become a current topic of research involving B. microti (B. sensu lato), a rather unique species that requires host collaboration to maintain an erythrocyte propagation cycle. The main attachment protein is synthesized by this parasite in excess and exported to the host from the erythrocyte infrastructure to immunize the host at all stages of infection. The synthesis of host immune IgM antibody is necessary for the propagation of B. microti, being central to entry into uninfected host erythrocytes. Sequential use of the host immune system then involves complement factor C3b to complete the three-part assembly necessary to initiate the rhoptry sequence for invasion of uninfected erythrocytes and further propagation. These several components must be furnished within the in vitro culture medium and the sequence of these reactions is discussed. The corollary view of the parasite survival versus the host immune defenses is also discussed as it involves the same host factors promoting continuing parasite growth. This is the first description of continuous in vitro propagation of B. microti.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call