Abstract

Continuous wave (cw), high-power operation of a strained In0.2Ga0.8As/ AlGaAs quantum well laser, grown by atmospheric pressure organometallic vapor phase epitaxy, is reported. The laser active region consists of a single 70 Å In0.2Ga0.8As/Al0.2Ga0.8As quantum well, with optical confinement provided by a graded index separate confinement heterostructure. The threshold current density and differential quantum efficiency of a 90 μm×600 μm stripe with uncoated facets are ∼200 A/cm2 and 46%, respectively. Lasing wavelength is ∼930 nm, and the cw single ended power versus current characteristic is linear up to 250 mW (1 A current). In the short-cavity (<300 μm) regime, these devices have high thresholds and have been observed to lase at shorter wavelength, presumably due to a saturation of gain at the lowest energy transition. The characteristic temperature is 150 K and decreases somewhat with cavity length. This suggests that some nonradiative process, most likely Auger recombination, contributes significantly to quantum well gain saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call