Abstract
A continuous-flow microfluidic electrochemical device (Flux Module) has been designed and evaluated as a practical new laboratory tool to facilitate electrochemical synthetic transformations. Four- and six-electron benzylic oxidations are reported to illustrate the utility afforded by a unique route of synthesis using this technology. Through the utilization of an electron-rich substrate (p-methoxytoluene), a continuous-flow electrochemical oxidation process was optimized. Using a general continuous-flow protocol, a series of diverse tolyl-based substrates were evaluated and the resulting data are reported. The Flux Module results were correlated with the oxidation potential of each substrate as measured by cyclic voltammetry. This established a trend regarding the nature of available oxidation product profiles using this synthesis platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.