Abstract
Reynolds-averaged Navier–Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES, first of all wall-modeled LES (WMLES) and detached eddy simulation (DES) methods, are regularly applied for wall-bounded turbulent flow simulations. Their characteristic advantages and disadvantages are well known: significant challenges arise from simulation performance, computational cost, and functionality issues. This paper describes the application of a new simulation approach: continuous eddy simulation (CES). CES is based on exact mathematics, and it is a minimal error method. Its functionality is different from currently applied simulation concepts. Knowledge of the actual amount of flow resolution enables the model to properly adjust to simulations by increasing or decreasing its contribution. The flow considered is a high Reynolds number complex flow, the Bachalo–Johnson axisymmetric transonic bump flow, which is often applied to evaluate the performance of turbulence models. A thorough analysis of simulation performance, computational cost, and functionality features of the CES model applied is presented in comparison with corresponding features of RANS, DES, WMLES, and wall-resolved LES (WRLES). We conclude that CES performs better than RANS, DES, WMLES, and even WRLES at a little fraction of computational cost applied for the latter methods. CES is independent of usual functionality requirements of other methods, which offers relevant additional advantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.