Abstract

Recent research has shown that nodule nitrogen fixation is limited under a wide range of environmental constraints by lowered carbon flux within the nodule due to down‐regulation of sucrose synthase activity. The aim of this work was to elucidate whether an increase in both carbon flux and activity of enzymes of carbon metabolism in nodules may lead to an increased nitrogen fixation. We report the effects caused by a continuous exposure to atmospheric CO2 enrichment in nodulated pea plants. CO2 enrichment led to an enhanced whole‐plant growth and increased nodule biomass. Moreover, nodules of plants grown at increased CO2 showed a higher sugar content as well as enhancement of some activities related to nodule carbon metabolism, such as sucrose synthase, UDP glucose pyrophosphorylase and phosphoenolpyruvate carboxylase. Indeed, acetylene reduction activity, measured by the classical technique, was increased more than four times. However, when specific nitrogen fixation was determined as hydrogen evolution, no significant differences were detected, consistent with the lack of changes of enzymes involved in nitrogen metabolism such as glutamate synthase and aspartate aminotransferase. These results are discussed in the context of the regulation of nitrogen fixation and nodule metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call