Abstract

Continuous blood pressure (BP) monitoring is essential for managing cardiovascular disease. However, existing devices often require expert handling, highlighting the need for alternative methods to simplify the process. Researchers have developed various methods using physiological signals to address this issue. Yet, many of these methods either fall short in accuracy according to the BHS, AAMI, and IEEE standards for BP measurement devices or suffer from low computational efficiency due to the complexity of their models. To solve this problem, we developed a BP prediction system that merges extracted features of PPG and ECG from two pulses of both signals using convolutional and LSTM layers, followed by incorporating the R-to-R interval durations as additional features for predicting systolic (SBP) and diastolic (DBP) blood pressure. Our findings indicate that the prediction accuracies for SBP and DBP were 5.306 ± 7.248 mmHg with a 0.877 correlation coefficient and 3.296 ± 4.764 mmHg with a 0.918 correlation coefficient, respectively. We found that our proposed model achieved a robust performance on the MIMIC III dataset with a minimum architectural design and high-level accuracy compared to existing methods. Thus, our method not only meets the passing category for BHS, AAMI, and IEEE guidelines but also stands out as the most rapidly accurate deep-learning-based BP measurement device currently available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.