Abstract
The financial time series have a high frequency and the difference between their observations is not regular. Therefore, continuous models can be used instead of discrete-time series models. The purpose of this chapter is to define Lévy-driven continuous autoregressive moving average (CARMA) models and their applications. The CARMA model is an explicit solution to stochastic differential equations, and also, it is analogue to the discrete ARMA models. In order to form a basis for CARMA processes, the structures of discrete-time processes models are examined. Then stochastic differential equations, Lévy processes, compound Poisson processes, and variance gamma processes are defined. Finally, the parameter estimation of CARMA(2,1) is discussed as an example. The most common method for the parameter estimation of the CARMA process is the pseudo maximum likelihood estimation (PMLE) method by mapping the ARMA coefficients to the corresponding estimates of the CARMA coefficients. Furthermore, a simulation study and a real data application are given as examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have