Abstract

This paper studies the continuous attractors of discrete-time recurrent neural networks. Networks in discrete time can directly provide algorithms for efficient implementation in digital hardware. Continuous attractors of neural networks have been used to store and manipulate continuous stimuli for animals. A continuous attractor is defined as a connected set of stable equilibrium points. It forms a lower dimensional manifold in the original state space. Under some conditions, the complete analytical expressions for the continuous attractors of discrete-time linear recurrent neural networks as well as discrete-time linear-threshold recurrent neural networks are derived. Examples are employed to illustrate the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.