Abstract

The current paper performs a global robust stability analysis for a class of discrete-time recurrent neural networks (DRNNs) with norm-bounded time-varying parameter uncertainties and interval time-varying delay. The activation functions are assumed to be globally Lipschitz continuous. An appropriate type of Lyapunov functional is proposed to establish the sufficient conditions for the DRNNs. The criteria are formulated by means of the feasibility of linear matrix inequalities (LMIs), which can be easily checked in practice. Two numerical examples are given to illustrate the effectiveness and applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.