Abstract

The effect of thermomechanical treatment (so-called training) cycles on stress-induced martensitic transformation and its reversion has been studied by atomic force microscopy (AFM) to make clear the origin of improvement of shape memory effect (SME) due to training in Fe-Mn-Si based shape memory alloys (SMAs). It was found that training cycles make martensite plates tend to grow on the primary shear system, i.e., on the most favorable shear system for the fcc to hcp martensitic transformation. In addition, training cycles lead to a more uniform distribution of thin martensite plates in a grain. Martensitic plates with the above characteristics are easier to be reverted back to parent phase when heated, and then nearly perfect SME is obtained. AFM observation shows that the key factor to realize perfect SME in Fe-Mn-Si based SMAs is to produce the uniform distribution of thin martensite plates on the primary shear system when deformed by extemal stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call