Abstract
Rough Path theory is currently formulated in p-variation topology. We show that in the context of Brownian motion, enhanced to a Rough Path, a more natural Holder metric π can be used. Based on fine-estimates in Lyons’ celebrated Universal Limit Theorem we obtain Lipschitz-continuity of the Ito-rnap (between Rough Path spaces equipped with π). We then consider a number of approximations to Brownian Rough Paths and establish their convergence w.r.t. π. In combination with our Holder ULT this allows sharper results than the p-variation theory. Also, our formulation avoids the so-called control functions and may be easier to use for non Rough Path specialists. As concrete application, we combine our results with ideas from [MS] and [LQZ] and obtain the Stroock-Varadhan Support Theorem in Holder topology as immediate corollary.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have