Abstract
We present radio observations of the afterglow of the bright gamma-ray burst GRB 991208 at frequencies of 1.4, 4.9 and 8.5 GHz, taken between two weeks and 300 days after the burst. The well-sampled radio light curve at 8.5 GHz shows that the peak flux density peaked about 10 days after the burst and decayed thereafter as a power-law t^-1.07. This decay rate is more shallow than the optical afterglow with t^-2.2, which was measured during the first week. These late-time data are combined with extensive optical, millimeter and centimeter measurements and fitted to the standard relativistic blast wave model. In agreement with previous findings, we find that an isotropic explosion in a constant density or wind-blown medium cannot explain these broadband data without modifying the assumption of a single power-law slope for the electron energy distribution. A jet-like expansion provides a reasonable fit to the data. In this case, the flatter radio light curve compared to the optical may be due to emission from an underlying host galaxy, or due to the blastwave making a transition to non-relativistic expansion. The model that best represents the data is a free-form model in which it is assumed that the broadband emission originates from a synchrotron spectrum, while the time-evolution of the break frequencies and peak flux density are solved for explicitly. Although the decay indices for most of the synchrotron parameters are similar to the jet model, the evolution of the cooling break is unusually rapid, and therefore requires some non-standard evolution in the shock. (abridged)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have