Abstract
<p style='text-indent:20px;'>Continuation methods are a well established tool for following equilibria and periodic orbits in dynamical systems as a parameter is varied. Properly formulated, they locate and classify bifurcations of these key components of phase portraits. Principal foliations of surfaces embedded in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula> resemble phase portraits of two dimensional vector fields, but they are not orientable. In the spirit of dynamical systems theory, Gutierrez and Sotomayor investigated qualitative geometric features that characterize structurally stable principal foliations and their bifurcations in one parameter families. This paper computes return maps and applies continuation methods to obtain new insight into bifurcations of principal foliations.</p><p style='text-indent:20px;'>Umbilics are the singularities of principal foliations and lines of curvature connecting umbilics are analogous to homoclinic and heteroclinic bifurcations of vector fields. Here, a continuation method tracks a periodic line of curvature in a family of surfaces that deforms an ellipsoid. One of the bifurcations of these periodic lines of curvature are connections between lemon umbilics. Differences between these bifurcations and analogous saddle connections in two dimensional vector fields are emphasized. A second case study tracks umbilics in a one parameter family of surfaces with continuation methods and locates their bifurcations using Taylor expansions in "Monge coordinates." Return maps that are generalized interval exchange maps of a circle are constructed for generic surfaces with no monstar umbilics.</p>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have