Abstract

Antibiotic resistance genes (ARGs) have been frequently detected in various matrices all over the world to attract wide attention due to the potential risks. Rare information is available on the pollution of ARGs in the waters of critical ecologically fragile regions such as the coastal zone at a continental scale. Therefore, this study performed field sampling during winter and summer along 18000 km coastline of China to investigate the distribution of target ARGs in coastal waters at a continental scale. The absolute abundances of ARGs in coastal waters showed drastic spatio-temporal variation with a mean value of 8.79 × 104/1.39 × 105 copies/mL in summer/winter, much lower than those in tail water from the maricultural zone or wastewater. The average absolute abundance of class 1 integron-integrase gene (intI1) in coastal waters was 9.68 × 103/4.15 × 104 copies/mL in summer/winter, still lower than that in tail water or wastewater. Quinolone resistance genes were the dominant ARGs in coastal waters to account for over 50% of total ARGs in most of sampling sites. Bacterial communities in coastal waters showed significant difference both at phylum and genus levels. Abundances of ARGs in coastal waters of this study were comparable with those in other regions previously reported. Tail water and wastewater might be the essential sources of ARGs in coastal waters. The findings of this study provided comprehensive information on the pollution status of ARGs in coastal waters at a continental scale, indicating that ARGs pollution has become a crucial stress affecting the sustainable development of coastal regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call