Abstract

AbstractCarbon release during continental rifting is thought to regulate atmospheric CO2 levels. Supercontinent dispersal‐induced extensional tectonics is similar during the Late Ediacaran and Jurassic, while they exhibit different increases in atmospheric CO2 concentration. The underlying mechanism of distinct CO2 emissions remains to be understood. Here, we conduct petrological‐thermomechanical modeling to show that metamorphic decarbonation and melting of carbonates that are derived from subducted sediments are ubiquitous during continental extension. We find that the hotter lithosphere and deeper storage of these carbonates cause more significant amounts of rift‐related CO2 release through volcanoes and faults. They may cause ∼12%–77% larger decarbonation efficiency, providing an efficient driving mechanism for a ∼31% larger increase in atmospheric CO2 levels during the Late Ediacaran than throughout the Jurassic. The rapid eruption and deposition of recycled carbonatite volcanic ash may contribute to the production of Late Ediacaran marine carbonates with the largest negative δ13C (−12‰).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call