Abstract

The perceived azimuth of a target sound is determined by the interaural time difference and the interaural level difference (ILD) and is subject to contextual effects from precursor sounds. This study characterized ILD-based precursor effects (PEs) for high-frequency stimuli in a total of seven normal-hearing listeners. In Experiment 1, precursor and target were band-pass-filtered noises approximately centered at 4 kHz (1.2- and 1-octave bandwidth, respectively) separated by a 10-ms gap. The effects of precursor location (ipsilateral, contralateral, and central) on the perceived target azimuth were measured using a head-pointing task. Relative to control trials without a precursor, ipsilateral precursors biased the perceived target azimuth toward midline (medial bias) and contralateral precursors biased it contralaterally (lateral bias). Central precursors caused a symmetric lateral bias. An auditory periphery model that determines the "internal" ILD at the auditory nerve level, including either realistic efferent compression control or auditory nerve adaptation, explained about 50% of the variance in the PEs. These within-trial PEs were accompanied by an across-trial PE, inducing medial bias. Experiment 2 studied the role of sequential segregation in the within-trial PE by introducing a pitch difference between precursor and target. Segregation conditions caused increased PE for ipsilateral, no effect for contralateral, and either no effect or reduced PE for central precursors. Overall, the ILD-based within-trial PE appears to be preshaped already in the auditory periphery and the mechanism underlying at least the ipsilateral PE appears to be immune against sequential segregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call