Abstract

Stored memories enter a temporary state of vulnerability following retrieval known as 'reconsolidation', a process that can allow memories to be modified to incorporate new information. Although reconsolidation has become an attractive target for treatment of memories related to traumatic past experiences, we still do not know what new information triggers the updating of retrieved memories. Here, we used biochemical markers of synaptic plasticity in combination with a novel behavioral procedure to determine what was learned during memory reconsolidation under normal retrieval conditions. We eliminated new information during retrieval by manipulating animals' training experience and measured changes in proteasome activity and GluR2 expression in the amygdala, two established markers of fear memory lability and reconsolidation. We found that eliminating new contextual information during the retrieval of memories for predictable and unpredictable fear associations prevented changes in proteasome activity and glutamate receptor expression in the amygdala, indicating that this new information drives the reconsolidation of both predictable and unpredictable fear associations on retrieval. Consistent with this, eliminating new contextual information prior to retrieval prevented the memory-impairing effects of protein synthesis inhibitors following retrieval. These results indicate that under normal conditions, reconsolidation updates memories by incorporating new contextual information into the memory trace. Collectively, these results suggest that controlling contextual information present during retrieval may be a useful strategy for improving reconsolidation-based treatments of traumatic memories associated with anxiety disorders such as post-traumatic stress disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call