Abstract

Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below ∼40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call