Abstract

Next generations of compute-intensive real-time applications in automotive systems will require more powerful computing platforms. One promising power-efficient solution for such applications is to use clustered many-core architectures. However, ensuring that real-time requirements are satisfied in the presence of contention in shared resources, such as memories, remains an open issue. This work presents a novel contention-free execution framework to execute automotive applications on such platforms. Privatization of memory banks together with defined access phases to shared memory resources is the backbone of the framework. An Integer Linear Programming (ILP) formulation is presented to find the optimal time-triggered schedule for the on-core execution as well as for the access to shared memory. Additionally a heuristic solution is presented that generates the schedule in a fraction of the time required by the ILP. Extensive evaluations show that the proposed heuristic performs only 0.5% away from the optimal solution while it outperforms a baseline heuristic by 67%. The applicability of the approach to industrially sized problems is demonstrated in a case study of a software for Engine Management Systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call