Abstract
In this paper, we propose novel content-based image retrieval (CBIR) algorithms using Local Octa Patterns (LOtP), Local Hexadeca Patterns (LHdP) and Direction Encoded Local Binary Pattern (DELBP). LOtP and LHdP encode the relationship between center pixel and its neighbors based on the pixels’ direction obtained by considering the horizontal, vertical and diagonal pixels for derivative calculations. In DELBP, direction of a referenced pixel is determined by considering every neighboring pixel for derivative calculations which results in 256 directions. For this resultant direction encoded image, we have obtained LBP which is considered as feature vector. The proposed method’s performance is compared to that of Local Tetra Patterns (LTrP) using benchmark image databases viz., Corel 1000 (DB1) and Brodatz textures (DB2). Performance analysis shows that LOtP improves the average precision from 59.31% to 64.36% on DB1, and from 83.24% to 85.95% on DB2, LHdP improves it to 65.82% on DB1 and to 87.49% on DB2 and DELBP improves it to 60.35% on DB1 and to 86.12% on DB2 as compared to that of LTrP. Also, DELBP reduces the feature vector length by 66.62% as compared to that of LTrP. To reduce the retrieval time, the proposed algorithms are implemented on a Hadoop cluster consisting of 116 nodes and tested using Corel 10K (DB3), Mirflickr 100,000 (DB4) and ImageNet 511,380 (DB5) databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.