Abstract

Massive datasets of communication are challenging traditional, human-driven approaches to content analysis. Computational methods present enticing solutions to these problems but in many cases are insufficient on their own. We argue that an approach blending computational and manual methods throughout the content analysis process may yield more fruitful results, and draw on a case study of news sourcing on Twitter to illustrate this hybrid approach in action. Careful combinations of computational and manual techniques can preserve the strengths of traditional content analysis, with its systematic rigor and contextual sensitivity, while also maximizing the large-scale capacity of Big Data and the algorithmic accuracy of computational methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.