Abstract

This tutorial review highlights recent and current advances in Os(II) and Ru(II) based luminescent complexes in view of their potential in providing models for photophysical properties and in serving as active materials in optoelectronic devices. It starts with a discussion of the fundamentals of pyridyl azolate chromophores and presents several prototypical designs that allow subtle variation of their basic properties. The third section of this article concerns the preparation of Os(II) and Ru(II) metal complexes and discusses the key factors that control their phosphorescence efficiencies and peak wavelengths. Attention is focused on the properties of their lowest lying excited states. In the last section, we present a series of related Os(II) complexes possessing pyridyl azolate, cyclometalated benzo[h]quinoline, beta-diketonates and quinolinates to demonstrate the power of fundamental basis to chemistry and theoretical approaches in rationalizing the corresponding photophysical behavior and hence to discuss the implications regarding their possible routes for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.