Abstract
We present a Bayesian approach for the Contamination Source Detection problem in water distribution networks. Assuming that contamination is a rare event (in space and time), we try to locate the most probable source of such events after reading contamination patterns in few sensed nodes. The method relies on strong simplifications considering binary clean/contaminated states for nodes in discrete time, and therefore focuses on the time structure of the sensed patterns rather than on the concentration levels. As a result, a posterior probability over discrete variables is written, and posterior marginals are computed using belief propagation algorithm. The resulting algorithm runs once on a given observation and reports probabilities for each node being the source and for the contamination patterns altogether. We test it on Anytown model, proving its efficacy even when only a single sensed node is known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.