Abstract

Xishan mining area in Taiyuan is a typical coal industry cluster with a variety of coal-related industrial sites such as coal mines, power plants and coking plants, which seriously pollute the native ecological environment. Study of the hydrochemical characteristics and pollution sources of groundwater in the area can contribute to the ecological protection and remediation of regional groundwater resources. In this study, we collected surface water and groundwater samples from the Xishan mining area and measured and analyzed hydrochemical and sulfur–oxygen isotopes. Results showed that 64.7% of groundwater in the study area exceeded the sulfate standard due to the influence of the coal industry, with some karst groundwater up to 2000 mg/L. In the runoff and discharge area of karst groundwater, the proportion of anthropogenic input of SO42− increased, which led to the hydrochemical type of karst groundwater gradually changing from HCO3-Ca·Mg (recharge area) to SO4-Ca·Mg (discharge area). Results of sulfur–oxygen isotope tests indicated that the δ34SSO4 and δ18OSO4 values of samples were −10.01~24.42‰ and −4.90~12.40‰, respectively, and the sulfur–oxygen isotope values of some karst groundwater were close to the dissolved end of sulfide minerals, indicating their sulfate mainly came from the oxidation of pyrite. Sulfate sources in groundwater water were parsed using IsoSource model. Calculated results revealed that sulfate in pore groundwater mostly originated from pyrite oxidation, and karst groundwater in the recharge area was mainly influenced by atmosphere precipitation, while groundwater in the runoff and discharge areas were significantly affected by pyrite oxidation, accounting for up to 90% in some karst groundwater. Comparing the sulfur–oxygen isotope values of karst groundwater in 1989, 2016 and 2022, we found that the δ34SSO4 values in 2022 decreased significantly, which indicated the expansion of karst groundwater pollution in the Xishan mining area. This study highlights the pollution of regional groundwater by coal-related industrial agglomerations, and the groundwater pollution in the Xishan mining area requires urgent remediation and restoration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.